Penalized logistic regression for detecting gene interactions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized logistic regression for detecting gene interactions.

We propose using a variant of logistic regression (LR) with (L)_(2)-regularization to fit gene-gene and gene-environment interaction models. Studies have shown that many common diseases are influenced by interaction of certain genes. LR models with quadratic penalization not only correctly characterizes the influential genes along with their interaction structures but also yields additional ben...

متن کامل

A screening-testing approach for detecting gene-environment interactions using sequential penalized and unpenalized multiple logistic regression.

Gene-environment (G × E) interactions are biologically important for a wide range of environmental exposures and clinical outcomes. Because of the large number of potential interactions in genomewide association data, the standard approach fits one model per G × E interaction with multiple hypothesis correction (MHC) used to control the type I error rate. Although sometimes effective, using one...

متن کامل

Classification of gene microarrays by penalized logistic regression.

Classification of patient samples is an important aspect of cancer diagnosis and treatment. The support vector machine (SVM) has been successfully applied to microarray cancer diagnosis problems. However, one weakness of the SVM is that given a tumor sample, it only predicts a cancer class label but does not provide any estimate of the underlying probability. We propose penalized logistic regre...

متن کامل

Penalized Logistic Regression in Case-Control Studies

Likelihood-based inference of odds ratios in logistic regression models is problematic for small samples. For example, maximum-likelihood estimators may be seriously biased or even non-existent due to separation. Firth proposed a penalized likelihood approach which avoids these problems. However, his approach is based on a prospective sampling design and its application to case-control data has...

متن کامل

Comparing two samples by penalized logistic regression

Inference based on the penalized density ratio model is proposed and studied. The model under consideration is specified by assuming that the log–likelihood function of two unknown densities is of some parametric form. The model has been extended to cover multiple samples problems while its theoretical properties have been investigated using large sample theory. A main application of the densit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biostatistics

سال: 2007

ISSN: 1465-4644,1468-4357

DOI: 10.1093/biostatistics/kxm010